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LETTER TO THE EDITOR 

Synapse removal in discrete neural networks 

R R Viswanathan 
Institute of Systems Science, National University of Singapore, Singapore 051 I 

Received 26 September 1994 

Abshad. The effect of removing synapses of particular magnitudes on the retrieval property 
of perceptron neural "erworks is determined by means of a spaceof-interactions calculation. 
For a discrete state perceptron, an asymptotic (in number of input neurons) upper bound on rhe 
number of errors made $ a set of given stored p m s  due to synapse removal is computed as 
a function of the number and size of synapses removed. 

There are several ways to quantify fault tolerance in neural networks. In 11-31. the effect of 
randomly diluting the connections in a neural network on the storage capacity was examined 
in differing contexts. Another measure of fault tolerance when neurons fail is given by the 
storage capacity of patterns that continue to be recalled without error, even when some of 
the neurons in the network fail. This measure of robustness was computed in an earlier 
paper [4]. 

In contrast to results of this nature, a different measure of robustness~is provided by the 
proportion of errors made in the recall of already stored patterns when some~of the synapses 
or connections in the network, of some definite magnitudes, are removed from the original 
network. 

The technique of trying to construct minimally-sized neural networks by starting from 
a larger network, and then trimming it down to size by eliminating redundant synapses and 
neurons in the network, is quite common among people engaged in the synthesis of neural 
networks. If there is a large saving in the size of the network achieved by this technique, 
then a small proportion of errors in the retrieval may be tolerable. In an earlier paper, the 
error made in the recall of stored patterns when the patterns are real valued and uniformly 
distributed, and when some of the synapses are removed, was computed by means ,of a 
geometric argument [5]. Also, the error resulting due to deletion of the smallest magnitude 
synapse was estimated in the case of discrete patterns by combinatorial means. The more 
general case of the deletion of a significant number of the synapses was found to be difficult 
to tackle combinatorially. 

Here we shall use a well known statistical physics technique to compute an upper bound 
on the proportion of errors resulting due to synapse deletion in  the case of discrete-valued 
patterns, for an arbitrary number of synapse deletionsi (and for any magnitudes of these 
synapses). 

It should be mentioned at this point that the case of discrete patterns is distinct from that 
of continuous patterns in terms of the effect of synapse removal. For uniformly distributed 
continuous patterns, it is not hard to see [5] that the fraction of errors due to synapse removal 
depends only on the angle between the .initial and final vector of weights. In general, this 
would not be the case for discrete patterns; for instance, if the number of stored patterns to 

0305-4470/95/010025+7$19,50 @ 1995 IOP Publishing Ltd L25 
. ,  



E 6  Letter to the Editor 

begin with is less than maximal, there may be enough 'room' in weight space to remove 
weights without affecting the quality of storage. The results below indeed indicate that this 
expectation is justified. 

The basic quantity of interest is the paition function in the space of interactions 16.71, 
which we define in what follows. We consider the case when the neuron states are discrete 
valued and take values il. We denote the states of the input layer of neurons by si, 
with i = 1, . . . , N .  For convenience, ,we also assume that there is a single output neuron 
whose state ( f l )  we denote by U .  If p patterns ( s ~ , u & )  are stored by the network, for 
f i  = 1, . . . , p, then the relations 

(1) 

are satisfied. The factor is introduced for convenient normalization. Patterns are fi  
therefore classified by the network according to this rule. Since this functional relation 
is invariant to an overall scale change of the w's, we choose the spherical normalization 

for the'weights wi. We shall find it convenient to refer to the' coefficient of N, on the 
right-hand side here, as the strength of the set of weights on the left-hand side; thus, the 
entire'set'of weights has strength unity. 

Now suppose that some of the synapses wi ,  k = k'N in number, are removed. Thus, k' 
is the fraction of synapses removed. Suppose, furthermore, that this set of weights, which 
we can take without loss of generality to be the set ( W I ,  w l . .  . . , wk). has strength s, i.e. 

I ,  

x ,E wj' = sN. 
/=1 

(3) 

The question we would like to address is then, what proportion of the original number 
of stored patterns p is misclassified by the trimmed network? 

Given a set of patiems classified correctly by the original untrimmed network, some of 
the pattems would, in general, be classified correctly even by the trimmed network, while 
others would acquire a non-zero probability of misclassification. However, this probability 
would, in general, depend on the particular set of stored patterns. Since the assumption 
of self-averaging is crucial to the spaceof-interactions method, we will be concerned here 
simply with the evaluation of the maximum number of correctly classified patterns pi  that 
can be stored by the trimmed network; this number can be computed by evaluating the 
quenched average of an appropriate free energy. The ratio of the remaining number of 
patterns to the original number of pattems stored by the untrimmed network 

P - P1 BU = - 
P (4) 

therefore constitutes a best-case upper bound on the proportion of errors introduced by the 
trimming process. It is a best-case bound because we are evaluating the m i m u m  number 
of patterns PI classified correctly by the trimmed network, which corresponds to the case 
when the set of k trimmed weights ( w I .  . . . , wk) with strength s is essentially unique. 
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We are now.ready to write down the partition function in .the space of weights. The 
partition function is simply &e volume in weight space that corresponds to the correct 
storage of input patterns by both the untrimmed and kimmed networks: . .  

where 

is a measure which normalizes the full set of weights and fixes the total strength of the 
removed synapses (recall that we are assuming that synapses w1 to wk are removed) to s. 
The B functions here ensure that both the untrimmed and the trimmed networks classify the 
input patterns correctly, so that the relations 

and 

hold simultaneously for all p~ patterns. 
The quenched free energy f = ((log Z)), averaged over input and ou@ut states U@ 

for all patterns, is what we want to evaluate. We shall use the replica hick to do this, as is 
usual. Since we have assumed that the,patterns are random, we have 

With a and b denoting replica indices, it is then necessary to define the following order 
parameters which arise in the evaluation of the quenched average: 

and 

We note that q measures the average overlap in weight space between replicas of the whole 
network, while q measures the overlap in weight space between replicas of the himmed 
network (with k weights of total strength s removed). 

These constraints in weight space are implemented as delta-function constraints; writing 
integral representations for the delta functions, one each for 4.6 and Tab, involves the 
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introduction of further order parameters F.6 and KOb. respectively. In addition, when 
measure (6) is written in terms of integral representations for the respective delta functions, 
two more order parameters E' and H" need to be introduced, respectively. 

The integrals can be evaluated in the saddle-point approximation, which is valid for N 
large. In this limit, with the replica-symmetric ansatz qd, = q. Tab = q, Fob = F, Kob = K, 
E" = E and H" = H, the relevant integrals can be computed by the saddle-point method, 
and the appropriate saddle-point equations can be written down in relatively simple form. 

We note at this point that the value of q is determined by the value of p1, since the 
same PI patterns are stored by the untrimmed network as well. This computation relating 
q to the number of stored patterns was performed first in [6], and the equation relating q 
to 01, = p l / N  can be written in the form 

m 
DZ - -.= - 

1 - q  2I " ' I  W ( r )  (9) 

with the variable 5 = z m  and where Dz is the Gaussian measure Dz e-zz/z/&. 
Here H ( t )  denotes the function H ( r )  = rrmDz. 

The saddle-point equations then express the fact that the free energy has zero derivative 
at the stationary point with respect to the order parameters q, F, H, E and K. The saddle- 
point equations for the last four variables here can be used to write the order parameter K 
in terms of the strength s of the synapse chops and the fractional number k' of synapses 
chopped 

( l - k ' ) ( l - ~ ) - k ' ~  ~~ K =  
@+s-1 )2  

The saddle-point equation for ?j &ds: 

where we have defined 

- 
5 = &/(I - s 

and 

The capacity aI is maximum when -+ (1 - s), which means that there is effectively 
only one way to choose k = k'N weights with strength s (these are the chopped weights); 
this is the 'best case' referred to earlier. In this limit equation (11) takes the simplified 
form 

. ,  

(12) 
1-s"' (1 -k')(l - s) - k's - - 

4 1 --s 
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Figure 1. The bound on the mor fraction as a function of the strength of chops s. ,The curve 
on the left-hand side is for k' = 0.4, and that an the right-hand si& is fork' = 0.2. 

Equations (9) and (12) must be solved together to determine 011 as a function of k' and 
s. A best-case upper bound on the classification error of the trimmed network when p~ < p 
is then provided by 

where 01 = p / N  and p is the initial number of paaerns stored by the original network. 
Note that when all synapses are removed, the output is merely guessed at random, so that 
one expects 50 percent errors in this case. The value e = 0.5 is therefore a default upper 
hound. 

The bound given by our calculation is not always tight; in fact it exceeds 0.5 for some 
values of s. In this case, we use the default bound of one half. However, for smaller s 
values, we expect the bound to be tighter. For small s and k' values, in fact, 011 > 01, which 
means that there is more than enough 'room' in weight space to accomodate the synapse 
removals without compromising on the storage of all of the original patterns; in this case, 
the process of synapse removal results in zero error. 

A numerical solution of these equations is provided in figure 1, which gives an upper 
bound on the error produced, due to synapse chopping as a function of the strength s of 
the chops, for two different values of the fractional number of synapses chopped k'. The 
'wiggles' in the figure are due to the finite accuracy of our numenc:l solution. It is assumed 
that p = 3 N / 2  patterns are stored to begin with. In contrast to the case of real valued inputs, 
where it was found that the error only depended on the strength of the chops [5 ] ,  the bound 
we have obtained for discrete patterns depends on both the number and strength of the 
chopped weights. 
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In conclusion, we have seen here how a best-case upper bound on the errors introduced 
in patterns stored in a perceptron upon removal of some of the synapses may be estimated 
by using statistical mechanics. This bound is asymptotic in the size of the network. It 
would be of further interest to obtain similar results for more general neural architectures 
as well. 
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